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Abstract

The Riemann sphere (RS), also know as the extended plane, was a breakthrough in complex anal-
ysis, introduced in B. Riemann’s Doctorial thesis (1851). His presentation was geometrical. We recall
the formula for stereographic projection from the Riemann sphere to C, and we derive a formula for
its inverse. This is a mapping from Z to P(x,y, z). We then discuss the physical interpretation of the
inverse mapping when the complex variable denotes an impedance.

1 Introduction

Here we derive the mapping from a point on the finite plane Z to its “image” on the Riemann Sphere S.
We then inteperprete the meaning of this transformation when the plane defines an impedance Z(s) as a
function of the complex frequency variable s = 0 + 1w.

There are two sets of coordinates required to set up this problem. First there is any point in R? denoted
R = [z,y,z]. The North Pole is given by [0,0,1] and the South Pole as [0,0,-1]. Second the points
Z = X +1Y on the finite plane (z = 0) are X = z and Y = y. The points on the extended plane are a subset
of R, denoted P(z,y,z), such that ||P|| = 1.

The mapping from the sphere to the finite plane Z, defined as Z = P~!(x,y, z), may be expressed in
either rectangular (z,y, z) or in spherical (¢, ) coordinates as?

Z(xy, ) = Y cot(?)ew. (1)
1-2

as shown in Fig. 1.> We desire the mapping from Z to [x,y, z] on the unit sphere (i.e., &« = P(A) of
Fig. 1).

The spherical cot(¢/2) formula comes from the “law of cotangents” described in Appendix A.

The problem then is to determine P(Z) ([, vy, z] given Z), namely find the mapping from any point
Z on the finite Z plane (indicated as A in Fig. 1), to the corresponding “puncture point” coordinates on S
a = P. Formally we may define this mapping as [z,y, z] = P(Z). In other words, given a point Z on the
finite plane, determine the points [x,y, z] on S, such that ||[z,y, z]|| = 1.

'Eventually we hope to discuss the Mobius transformation of the plane to the sphere.
2yikipedia.org/wiki/Riemann_sphere
3Jean-Christophe BENOIST wikipedia.org/wiki/Riemann_sphere



Figure 1: Riemann Sphere

The solution: The final result is*
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[2,y,2] = P(2) = 2)

where X =RZ and Y =JZ.
A more compact way of stating P(Z) is to express P in terms of a complex number (, proportional to
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along with the corresponding 2z coordinate
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Equations 1-4 “make sense” in terms of the construction of Fig. 1:

* Eq. 1 and Eq. 3: 0 = «Z(x,y) = «(. From Eq. 3 we see that |Z/(| = (1 + |Z|?)/2. Thus when
|Z| > 1, |Z/¢| > 1. From the construction this is easy to visualize, as |(| is always inside the unit
disk. Less obvious is what happens to || for |Z] < 1.

* Eq. 2: This equation describes the coordinates for « in terms of Z, whereas Eq. 1 is the inverse
relationship.

* Eq. 4 is the “height” of point «(|Z]). When |Z| =0, z = —1. When |Z| = 1, z = 0, and when |Z| - oo,
z—1

1.1 Mappings between the finite and extended planes

We are looking for the formula for the image point « given any point Z = X + 1Y on the finite plane. The
approach is to derive the formula for the mapping from the north pole of S to any point R € R2.

*http://www.encyclopediaofmath.org/index.php/Riemann_sphere
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A line R(t) = p+t(q — p) is defined by two points p,q € R3. When ¢t = 0, R(0) = p and when ¢ = 1,
R(1) = q. The line from the north pole p = [0, 0, 1] to point ¢ = [z, y, z] (any point in R3) is thus given by

R(t) = [tz ty, 1 +t(z - 1)].

Line from the north pole to the finite plane Z: Note —1 < z < 1 is limited to be between the two poles.
We define our line P(%) to go from the North pole to the Z plane at z = 0. When z = 0, R(¢) becomes

P(t) = [tX,tY,1-t].

1.2 Restricting [z, y, z] to the Riemann Sphere

To restrict the points [z, y, z] to be on S we require that
PO =t (X2 +Y?) +#* -2t +1=1.

or in terms of |Z|
PO =t*(1+|Z)*)-2t+1=1.

2
t={——=5,0.
{1+|Z!2’}

The root 0 corresponds to the north pole. Thus

Solving this equation for £ we have

[2Xa 2Y7 |Z|2 _ 1]

PO =1

which is the desired Eq. 2.
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Figure 2: Superimposed mappings. The point z = 1 is indicated on the z axis (dark-blue) and w = 1 is
indicated on the w axis (light blue). The projections of these points are then reflected to the other’s axis.
E.G., w =1 is projected onto the z axis as indicated by the solid dark-blue filled circle.



2 Examples of important mappings

Here we wish to discuss some important examples, mapping out P(Z) for some classic case of impedance
Z(s) and reflectance I'(s).

We begin with the item in Fig. 2 which shows two variables, z and w which are rotated by 30° relative
to each other.
Some ideas

« Z=1/\/(s)
* The map for various bilinear transformations.

I gratefully acknowldege helpful discussions with John D’ Angelo.

A Law of cotangents
For our case, ¢ is the polar angle and a be the length of the chord from the North Pole (V) to the puncture

point «, then the triangle’s sides are a, 1, 1. The semi-perimeter s is defined one-half the sum of the three
sides (i.e., s = 1 + a/2), while the inradius (the radius of the inscribed circle) is

T:\/(s-a)(s;n(s-n:g\/g_ )

The law of cotangents is cot(¢/2) = (s — a)/r. From Fig. 1 a is the chord form N to a.

Shttp://en.wikipedia.org/wiki/Law_of_cotangents
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